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Abstract Feature diagrams have become commonplace in
software product line engineering as a means to document
variability early in the life cycle. Over the years, their appli-
cation has also been extended to assist stakeholders in the
configuration of software products. However, existing fea-
ture-based configuration techniques offer little support for
tailoring configuration views to the profiles of the various
stakeholders. In this paper, we propose a lightweight, yet for-
mal and flexible, mechanism to leverage multidimensional
separation of concerns in feature-based configuration. We
propose a technique to specify concerns in feature diagrams
and to generate automatically concern-specific configura-
tion views. Three alternative visualisations are proposed. Our
contributions are motivated and illustrated through excerpts
from a real web-based meeting management application
which was also used for a preliminary evaluation. We also
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1 Introduction

An increasing number of software developments adopt the
paradigm of software product line engineering (SPLE) [1].
The goal of SPLE is to rationalise the development of fam-
ilies of similar software products. A key idea is to institu-
tionalise reuse throughout the development process to obtain
economies of scale.

SPLE is becoming increasingly widespread in industry,
but is also a very active research area at the crossroads
between many software development related disciplines.
An important research topic in SPLE are feature diagrams
(FDs) [2,3]. FDs are a simple visual formalism whose main
purpose is to document variability in terms of features, i.e.
high-level descriptions of the capabilities of reusable arte-
facts. The main concepts of the language are features (repre-
sented as labelled nodes) and relationships between features
(edges). The language is described and illustrated more accu-
rately in Sect. 2.

FDs have been given a formal semantics [3] which opened
the way for safe and efficient automation of various, oth-
erwise error-prone and tedious, tasks such as consistency
checking, FD merging, product counting, etc. A repertoire of
such automations can be found in [4]. The kind of automation
that we focus on in this paper is feature-based configuration
(FBC). FBC is an interactive process during which one or
more stakeholders select and discard features for a specific
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product being built. Traditionally, FBC systems support FD
modelling, analysis and configuration.

FBC is one of the principal means to specify product
requirements in SPLE. In real projects, there can be thou-
sands of features whose legal combinations are governed by
many and often complex rules [5,6]. It is thus of crucial
importance to be able to simplify and automate the deci-
sion-making process as much as possible. Currently, FBC
techniques and tools facilitate the work of stakeholders in
various ways, including: decision verification and propa-
gation [5,7,8]; auto-completion [9,7]; scheduling of con-
figuration tasks [10–12]; and alternative representations of
FDs [13,14].

Two challenges that these FBC techniques fail to address
in a satisfactory way are (1) tailoring the configuration envi-
ronment according to the stakeholder’s profile (knowledge,
role, preferences…), and (2) managing the complexity result-
ing from the size of the FD. Two concurrent approaches
have been proposed to tackle that problem: view integra-
tion and view projection. View integration techniques start
from small and roughly independent FDs that are config-
ured and then integrated to form a complete configuration
(e.g. [15–17]). In practice, the gain of designing and work-
ing with smaller models often echoes with costly and com-
plex integrations of heterogeneous models [18]. Conversely,
view projection techniques assume the existence of a global
FD that is divided into smaller views, which are then con-
figured. The high upfront investments necessary to build the
initial FD is counterbalanced by the automatic integration of
user decisions. The wide application of that latter approach
in various domains (see e.g. database engineering [19] or
product line implementation [20]) and our own experience
showing that a single feature model is usually favoured over
an heterogeneous collection thereof lead us to focus on view
projection.

In FBC, a view is a simplified representation of an FD
that has been tailored for a specific stakeholder, role, task,
or, to generalize, a particular combination of these elements,
which we call a concern. Views facilitate configuration in
that they only focus on those parts of the FD that are rele-
vant for a given concern. Using multiple views is thus a way

to achieve separation of concerns (SoC) in FDs. SoC helps
making FD-related tasks less complex by letting stakehold-
ers concentrate on the parts of the FD that are relevant to
them and hiding the others.

In Fig. 1, we represent the key steps and artefacts of
FBC that use view projection. Typically, the process starts
with variability modelling, which produces the FD. The sec-
ond step focuses on the identification of stakeholders, which
determines the profiles of the users of the configurator. Then,
a view on the FD is defined for every profile. The final step is
the actual configuration of the FD, which results in the spec-
ification of the product, a.k.a. configuration (set of selected
features).

In this paper, we focus on the creation of consistent views
and the generation of alternative visualisations for configura-
tion, as highlighted in Fig. 1. Specifically, we address three
fundamental issues of multi-perspective feature modelling:

(RQ1) View specification How are views actually speci-
fied? Related work usually identifies views by sur-
rounding groups of features with a line or by showing
subsets of features from the original FD. This gives
very little insight as to how to actually build these
views in practice and certainly does not tell how to
implement a tool that renders them.

(RQ2) View coverage How is the complete configuration of
the FD enforced? Views delimit portions on the set
of features. To be meaningful, views should cover the
complete decision space defined by features, i.e. one
should ensure that no feature of the FD can be left
undecided.

(RQ3) View visualisation How are features outside a view
filtered out? Some stakeholders need to see features
outside a view to comprehend it. However, for large
or technical FDs, the complexity can become disori-
enting and features outside the view have to be hidden
to simplify the configuration task. Finally, security
policies can restrict the set of stakeholders who can
access (read/write) particular features. These differ-
ent scenarios put different constraints on view ren-
dering.

FD les
Variability 
modelling

Stakeholder 
cation Views Product

View 
cation guration

Start

End

FlowActivity

Data

Fig. 1 Key steps and artefacts of FBC with view projection
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Table 1 FD decomposition
operators

Our contribution is a set of techniques to specify, automati-
cally generate and check multiple views. Views are generated
through transformations of the FD. Verifications and trans-
formations are formally defined, and the correctness of the
transformations is demonstrated. We also report on the pro-
gress made in developing tool support for multi-view FBC.

The rest of this paper is organised as follows. Section 2
recalls the basics of FDs. Section 3 gives an overview of
PloneMeeting, the motivating example used throughout the
paper. Section 4 presents our contribution by defining for-
mally how views are built and visualised. Section 5 illustrates
the formalisation and visualisation techniques by revisiting
the motivating example. Section 6 demonstrates the correct-
ness of the formalisation whilst Sect. 7 presents the tool sup-
porting it. Finally, Sect. 8 examines related work.

2 Feature-based configuration

2.1 Formal semantics of FDs

In [3], Schobbens et al. surveyed and gave a general for-
mal semantics to a wide range of FD dialects. We reuse it
in this paper. The full details of the formalisation cannot be
reproduced here, but we need to recall the essentials. The for-
malisation follows the guidelines of Harel and Rumpe [21],
according to whom each modelling language L must possess
an unambiguous mathematical definition of three distinct ele-
ments: the syntactic domain LL , the semantic domain SL and
the semantic function ML : LL → SL , also traditionally
written [[·]]L .

The syntactic domain (abstract syntax) of an FD language
F D is defined as follows.

Definition 1 (Syntactic domain LF D) A diagram d ∈ LF D

is a 6-tuple (N , P, r, λ, DE,�) such that:

– N is the (non-empty) set of features (nodes).
– P ⊆ N is the set of primitive features, i.e. the features

meaningful to users.
– r ∈ N is the root.
– DE ⊆ N × N is the decomposition relation between fea-

tures which forms a tree. For convenience, we will use

children(n) to denote {m | (n, m) ∈ DE}, the set of all
direct sub-features of n, and write n → m sometimes
instead of (n, m) ∈ DE .

– λ : N → N × N indicates the decomposition type of a
feature n ∈ N , represented as a cardinality 〈i.. j〉 where
i indicates the minimum number of children required
in a product and j the maximum such that 0 ≤ i ≤
j ≤ |children(n)|. For convenience, special cardinali-
ties are indicated by the Boolean operator they represent,
as shown in Table 1.

– � is a formula that captures crosscutting constraints (e.g.
� requires 	 and � includes 	) as well as textual
constraints. Without loss of generality, we consider �

to be a conjunction of Boolean formulae on features, i.e.
� ∈ B(N ), a language that we know is expressively com-
plete wrt. SF D [22].

Furthermore, each d ∈ LF D must satisfy the following well-
formedness rules:

– r is the root: ∀n ∈ N (�n′ ∈ N • n′ → n) ⇔ n = r ,
– DE is acyclic: �n1, .., nk ∈ N • n1 → .. → nk → n1,
– Terminal nodes are 〈0..0〉-decomposed.

This abstract syntax is typically rendered through one of
two visual (concrete) syntaxes.1 The most common is a tree-
shaped graph which we call the “classical” concrete syntax.
However, in this paper, we use an alternative visual syntax:
the “file explorer” syntax because of its scalability (width
grows very slowly with the number of features and complex-
ity can be managed through “collapse and expand”). Both
syntaxes are illustrated in Table 1. An FD in the file explorer
syntax is shown in Fig. 2. It is an excerpt from our motivat-
ing example (see Sect. 3). It describes the variability of the
voting component of a meeting management software prod-
uct line (SPL). In mathematical form, the FD of Fig. 2 is
equivalent to:

N = {V, E, Ė, A, Ȧ, Y, O, B, D, Ḋ, DY, DO, DB};
P = {V, E, A, Y, O, B, D, DY, DO, DB};
1 Although more concrete syntaxes exist in the literature, including
textual syntaxes [23].
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A <equals> Enable voting
D.Yes <requires> A.Yes
D.No <requires> A.No
D.Abstention <requires> A.Abstention

Votes (V)

Enable voting (E)

Available vote values (A)

Yes (Y)

No (O)

Default vote value (D)

Yes (DY)

No (DO)

X

Abstention (B)

Abstention (DB)

Extra constraints

Available vote values = A
Default vote values = D

Abbreviations

Fig. 2 Voting-related features of the meeting manager in “file exp-
lorer” FD syntax

r = V ;
DE = {(V, E), (V, A), (A, Y ), ...};
λ(V ) = 〈3..3〉;λ(Ė) = 〈0..1〉;λ(E) = 〈0..0〉;λ(A)

= 〈1..3〉; . . .

� = (A ⇔ E) ∧ (DY ⇒ Y ) ∧ (DO ⇒ O) ∧ (DB ⇒ B)

Features Ė, Ȧ and Ḋ are non-primitive features used to
encode optionality (features adorned with small hollow cir-
cles in the concrete syntax). They all have 〈0..1〉 cardinalities,
i.e. λ(Ė) = λ( Ȧ) = λ(Ḋ) = 〈0..1〉. This is a purely tech-
nical trick in the translation from concrete to abstract syntax
that has no impact on the user notation [3].

The semantic domain formalises possible meanings of dia-
grams. The role of the semantic function is to associate a
meaning to each syntactically correct diagram. FDs repre-
sent SPLs, hence the following two definitions.

Definition 2 (Semantic domain SF D) SF D
�= P(P(P)),2

indicating that each syntactically correct diagram should be
interpreted as a product line, i.e. a set of configurations or
products (set of sets of primitive features).

Definition 3 (Semantic function [[d]]) Given d ∈ LF D, [[d]]
returns the valid feature configurations FC ∈ P(P(N ))

restricted to primitive features: [[d]] = FC |P , where the
valid feature configurations FC of d are those c ∈ P(N )

that:

1. contain the root: r ∈ c,
2. satisfy the decomposition type:

f ∈ c ∧ λ( f ) = 〈m..n〉 ⇒ m ≤ |children( f ) ∩ c| ≤ n

3. justify each feature: g ∈ c ∧ g ∈ children( f )⇒ f ∈ c,
4. satisfy the additional constraints: c |� �.

2 P is the powerset symbol.

The projection operator used in Definition 3 will be used
throughout the paper; it is defined as follows.

Definition 4 (Projection A |B) For two given sets A and B,
we note A |B the projection of A on B such that:

A |B
�= {a′|a ∈ A ∧ a′ = a ∩ B} = {a ∩ B|a ∈ A}

For example, the semantics of the FD in Fig. 2 contains
20 products, four of which are listed below3:

{{V }, {V, E, A, Y, O, D, DY }, {V, E, A, Y, O, B},
{V, E, A, Y, O, B, D, DB}, ...}
Details, benefits, limitations and applications of the above

semantics are discussed extensively in [3]. We will rely on it
in the remainder of this paper.

2.2 Tool support

Over the years, various interactive FBC environments have
been developed (e.g. [24–27]). Based on formal semantics,
these tools use solvers (e.g. SAT, BDD and CSP) to propagate
decisions throughout the FD and ensure the global consis-
tency of the final product. Commercial FBC tools (e.g. [25,
27]) also offer integration with popular modelling environ-
ments like IBM Rational or Simulink.

Traditionally, FBC tools assume that there exists a sin-
gle monolithic FD and do not account for configuration
processes that are distributed among various stakeholders
who have specific concerns and who intervene at different
moments [28,29]. Without the appropriate support, FBC can
become very cumbersome and error-prone, e.g. if a single
stakeholder has to decide on behalf of all others [28]. Our
collaborations with industry [12] have confirmed the need
for techniques and tools that support such multi-user config-
uration processes. In the next section, we motivate that claim
with an example taken from an open source SPL of meeting
management systems.

3 Motivating example

PloneGov4 is an international Open Source (OS) initiative
coordinating the development of secure, collaborative and
evolutive eGovernment web applications. PloneGov gathers
hundreds of public organizations worldwide. This context
yields a significant diversity, which is the source of ubiqui-
tous variability in the applications.

3 Non-primitive features introduced to encode optionality are automat-
ically filtered out by the semantic function.
4 http://www.plonegov.org/.
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Our collaboration with PloneGov developers aims at
addressing those variability management challenges [30–
32]. We concentrate here on PloneMeeting, PloneGov’s
meeting management project, which has now been
re-engineered as an SPL. A major challenge was to extend
its flexibility through systematic variability management. We
collaborated with the developers in designing an FD repre-
senting the configuration options of PloneMeeting. A sam-
ple of this FD 5 is presented in Fig. 3. The extra constraints
appear in the lower right corner. The coloured areas should
be ignored for now. The essential concepts of this model are
introduced below.

Meeting management typically follows a three-step pro-
cess: (1) meeting items, i.e. points to be discussed, are created
and validated; (2) a meeting is created and existing meeting
items are put on its agenda; (3) after publication, the meet-
ing takes place and the decisions made on items are archived.
In PloneMeeting, each item and meeting has its own statema-
chine, reflecting the management workflow. A typical work-
flow contains states like “Created”, “Closed” or “Archived”.
The states and transitions of the workflow are selected and
possibly customised during the installation of PloneMeet-
ing to be compliant with local policies. PloneMeeting also
provides support for basic task management and electronic
voting.

PloneMeeting recognizes three different stakeholder pro-
files. Each of these profiles independently configures a part of
the website. The web administrator is a Plone expert in charge
of the installation, maintenance and update of the PloneMe-
eting instance. The PloneMeeting manager is responsible
for the base configuration of the website, including meeting
workflow definition. The users directly exploit the meeting
management functionalities as participants, meeting manag-
ers, observers, etc. The configuration options of interest for
each of these profiles are thus different and limited in scope.

A major problem is that existing FBC tools do not provide
means to control who is responsible for a given configuration
option. At best, informal comments or notes can be added to
tag features, which severely limits the automated tailoring of
configuration interfaces and the control over access rights.
However, these two functionalities are required by PloneMe-
eting. In the absence of clear access specifications, a coarse
policy has been implemented: the web administrator and the
PloneMeeting manager have both access to all configura-
tion options, while the users get access to none. A reported
consequence is that sometimes the PloneMeeting manager
does not have sufficient knowledge to fully understand the
options and make decisions. The results were incorrect set-
tings of interfaces to external macros and runtime changes of
meeting workflows that lead to inconsistent meeting states.
Additionally, users are denied any tailoring of their working

5 Reverse-engineered from PloneMeeting version 1.7 build 564.

environment, e.g. default GUI layouts or choosing how to
display states of meetings or other items.

Furthermore, responsibilities and profiles can vary from
one PloneMeeting instance to the other. The variability in
the use context might imply variations in the access rights
(e.g. the PloneMeeting manager cannot control workflows).
It might also require other stakeholder profiles (e.g. a Task
Manager is needed to configure the task portlet). Conse-
quently, responsibilities and profiles should not be hardcoded
in the FD but defined on a case-by-case basis, typically before
or during the instantiation of the website.

This situation provided the initial motivation for the use
of views as a flexible means to build and reason about con-
figuration spaces. However, existing solutions to multi-view
feature modelling fail to provide complete support to model
this case.

4 Multi-view feature diagrams

4.1 Basic definition

Answering our three research questions requires being able
to specify which parts of the FD are configurable by whom.
This can be achieved easily by augmenting the FD with a set
V of views, each of which consists of a set of features. Based
on the definition introduced in Sect. 2, a multi-view FD is
defined as follows.

Definition 5 (Multi-view FD) A multi-view FD m is a tuple
(N , P, r, λ, DE,�, V ) where V = {v1, v2, . . . , vn} is the
multiset of views such that:

– N , P, r, λ, DE,� conform to Definition 1;
– ∀vi ∈ V • vi ⊆ N ∧ r ∈ vi .

A view can be defined for any profile or, more generally,
for any concern that requires only partial knowledge of the
FD. As a general policy, we consider that the root is part of
each view. V is a multiset to account for duplicated sets of
features.

4.2 View specification

There are essentially two ways of specifying views, and
answer RQ1. The most obvious is to enumerate, for each
view, the features that appear in it—or equivalently, to tag
each feature of the FD with the names of the views it belongs
to. This is an extensional definitions. For large FDs, this might
be very time-consuming and error-prone without proper tool
support. A natural alternative is thus to provide a language for
intensional definitions of views that takes advantage of the
FD’s tree structure to avoid lengthy enumerations. To avoid
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Fig. 3 Excerpt of
PloneMeeting’s FD. Coloured
areas represent the
stakeholders’ concerns

Available vote values = A
Default vote values = D

Abbreviations

Web
administrator

User

PloneMeeting 
manager

g (MC)

General (G)
Title

Assembly members

Institution ID

Data (D) 

Meeting attributes

Start time

End time

Attendees

Place

Use groups as categories

Item insertion algorithm

At the end

Category order

Proposing group order

W ow and security (W)

ow

ow

ow

ow

Zope 3 condition interface

Zope 3 action interface
User interface (U)

Meeting display states

Archived

Created

Decided

Closed

Published

Default view

My items

All items

Available meetings

Decided meetings
Item duplication

Open annexes in separate window

cation (E)

Tasks (T)

Display macro

Task creator

Manager

Meeting manager

Owner
Votes (V)

Enable voting

Vote encoder

Meeting manager

Voter

Available vote values

Yes

No

Default vote value

Yes

No

X

X

X

X

Abstention

Abstention

Task creator <requires> Display macro
Vote encoder <requires> Enable voting
A <equals> Enable voting
D.Yes <requires> A.Yes
D.No <requires> A.No
D.Abstention <requires> A.Abstention

Extra constraints

reinventing the wheel, we identified a simple subset of XPath
(see Table 2) to fit the purpose.6 We have chosen XPath
because it was designed to navigate in tree-structures and

6 For a formal definition, see http://www.w3.org/TR/xpath.

it is a W3C standard that has been used for more than a
decade. An application to our motivating example is pre-
sented in Sect. 5. The downside of intensional definitions is
that textual languages like XPath might be less affordable
than graphical approaches for casual users. The consistency
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Table 2 View query language
Path expression Meaning

* Select all the children of the current node (wildcard)

nodename Select all the children with name nodename of the current node

/nodename Select the root node if it matches the name

nodename1/nodename2 Select all the children with name nodename2 of node nodename1

//nodename Select all the elements with name nodename, no matter where they appear

nodename1//nodename2 Select all the descendants with name nodename2 of node nodename1

path_expr1 | Select all the nodes matching path_expr1 and path_expr2

path_expr2

between the FD and the XPath expression is also harder to
maintain when the diagram evolves. Unlike tags attached to
features, XPath expressions rely on the structure of the FD
and feature labels.

In practice though, extensional and intensional definitions
can be used together. XPath expressions can be generated
based on interactions with a well-designed view definition
GUI rather than written by hand. Conversely, XPath expres-
sions could be used to generate feature tags and link them to
the features in the XPath expression. These links can then be
used to trace changes to the FD back in the XPath expression.
This way we can avoid the drawbacks of both extensional and
intensional definitions.

For the formal developments that follow, we are only inter-
ested in the features contained in each view. Therefore, we
will abstract from the approach chosen to specify views.

4.3 View coverage

An important property to be guaranteed by an FBC system is
that all configuration questions be eventually answered [11],
i.e. that a decision be made for each feature of the FD. This
is the issue raised by RQ2.

In a multi-view context, it is tempting to enforce the fol-
lowing condition.

Definition 6 (Sufficient coverage condition) For a view v of
a multi-view FD m the sufficient coverage condition is:
⋃

v∈V

v = N

Intuitively, this means that all the features appear in at
least one view, hence no feature can be left undecided.7 In
our motivating example (Fig. 3), each feature is part of a view.
Hence, this condition holds: the collaborative configuration
of the FD through the views will always lead to complete and
valid products. This is indeed a sufficient condition, but not

7 Note that the complete view coverage is usually assumed by mutli-
view approaches (e.g. [28]).

necessary since some decisions can usually be deduced from
others. For instance, in the web administrator’s view, if the
feature Display macro is selected, its ancestor Tasks will be
too, although the latter does not belong to the view.

A necessary condition can be defined using the notion
of propositional defineability [33]. We need to ensure that
the decisions on the features that do not appear in any view
can be inferred from (i.e. are propositionally defined by) the
decisions made on the features that are part of the view.

Definition 7 (Necessary coverage condition) For a view v

of a multi-view FD m the necessary coverage condition is:

∀ f /∈
⋃

v∈V

v • defines

(
⋃

v∈V

v , f

)

To evaluate defines, it suffices to translate the FD into
an equivalent propositional formula (which is done in lin-
ear time [22]) and apply the SAT-based algorithm described
in [33]. This check is NP complete in theory, but this is not
expected to be a problem in practice. Indeed, SAT solvers
can handle FDs with thousands of features [34]. To date, the
largest FDs available count over 6,000 features [6], which is
still within the comfort zone of SAT solvers. Therefore, we
are pretty confident that no performance issue would jeopar-
dize the verification of the necessary condition, even in very
large projects.

Features in N \ ⋃
v∈V v that do not satisfy the above con-

dition will have to be integrated in existing views, or extra
constraints will have to be added to determine their value.

Since the view coverage in PloneMeeting is complete, the
necessary condition is trivially satisfied. However, in other
domains such as operating systems, features used mostly for
calculations (e.g. which boot entry should be used) are hid-
den to users [6]. These features cannot be part of any view.
In that case, the verification of the necessary condition deter-
mines whether the value of the hidden features can be derived
from the features in the views.
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4.4 Visualisation

Views are abstract entities. To be effectively used during
FBC, they need to be made concrete, i.e. visual. Henceforth, a
visual representation of a view will be called a visualisation.
The goal of a visualisation is to strike a balance between (1)
showing only features that belong to a view, and (2) includ-
ing features that are not in the view but that provide context
and thereby allow the user to make informed decisions. For
instance, the Display macro feature is in the view of the web
administrator, but its parent feature Tasks is not.

To tackle this problem formulated in RQ3, we observed
the practice of the PloneMeeting developers and discussed
alternative visualisations. We also inspected the approaches
suggested in [28,35]. We finally looked into filtering mech-
anisms provided by tools. Tools like pure::variants [25] or
kernel configurators for operating systems (e.g. xconfig
for Linux or configtool for eCos [36]) provide simple
filtering or search mechanisms that are similar to views on an
FD. A filter is defined as a regular expression on the FD. Any
feature matching the regular expression is displayed—with-
out any control on the location of the feature in the hierarchy.
Interestingly, all these approaches produce purely graphi-
cal modifications (e.g. by greying out irrelevant features)
whereas cardinalities are not recomputed.

The outcome of our investigation is a set of three com-
plementary visualisations offering different levels of details.
They were built to present information on a need-to-know
basis. They allow to regulate the amount of information dis-
played, and provide enhanced control over access rights. For
instance, a standardised configuration menu will always dis-
play the position of the feature in the hierarchy and hide
unavailable options whilst critical systems will conceal all
the features outside a view to protect fabrication secrets.
Thereby, visualisations not only propose convenient rep-
resentations of a view, but also dictate what information
is accessible to the stakeholder. These visualisations are
depicted in Fig. 4. The FD on the left is the same as in Fig. 2.
The darker area defines a specific view of it, called v.

– The greyed visualisation is a mere copy of the whole
FD except that the features that do not belong to the
view are greyed out (e.g. A, B, DO and DB). Greyed
features are only displayed but cannot be manually
selected/deselected.

– In the pruned visualisation, features that are not in the
view are pruned (e.g. B, DO and DB) unless they appear
on a path between a feature in the view and the root, in
which case they are greyed out (e.g. A).8

8 Abstractly, when an optional feature is pruned, so is its parent non-
primitive feature.

– In the collapsed visualisation, all the features that do not
belong to the view are pruned. A feature in the view whose
parent or ancestors are pruned is connected to the closest
ancestor that is still in the view. If no ancestor is in the
view, the feature is directly connected to the root (e.g. Y
and O).

Generating such visualisations from an FD and a view is
a form of FD transformation. To implement these transfor-
mations and prove their correctness we need to formalize
them.

Definition 8 (View visualisation) The visualisation of a view
v is the transformation of the original FD into a new FD such
that dt

v = (N t
v, r, λt

v, DEt
v,�), where t , the type of visual-

isation, can take one of three values: g (greyed), p (pruned)
and c (collapsed).

The simplest case is the one of the greyed visualisa-
tion, since there is no transformation beyond the greying
of each feature f �∈ v (i.e. dg

v = d). The transformations
for the pruned and collapsed visualisations are, respectively,
specified in Transformations 1 and 2. Basically, they filter
nodes, remove dangling decomposition edges and adapt the
cardinalities accordingly. We leave crosscutting constraints
untouched in the following definitions because they are usu-
ally not displayed in FBC systems. They are reintroduced in
Sect. 7 when we discuss how our toolset handles both trans-
formations and crosscutting constraints to maintain decision
consistency.

4.4.1 Pruned visualisation

N p
v , the set of features in this visualisation, is the subset of

N limited to features that are in v or have a descendant in
v. The definition uses DE+, the transitive closure of DE .
Based on N p

v , we remove all dangling edges, i.e. those not
in N p

v × N p
v to create DE p

v .

Transformation 1 (Pruned visualisation) The transforma-
tions applied to the FD to generate the pruned visualisation
are:

N p
v = {n ∈ N |n ∈ v ∨ ∃ f ∈ v • (n, f ) ∈ DE+}

DE p
v = {DE ∩ (N p

v × N p
v )}

λ
p
v ( f ) = (mincard p

v ( f ), maxcard p
v ( f ))

To compute the new cardinalities λ
p
v ( f ), mincard p

v ( f )

and maxcard p
v ( f ) are defined as follows:

mincard p
v ( f ) = max(0, λ( f ).min − |or phans p

v ( f )|)
maxcard p

v ( f ) = min(λ( f ).max, |children( f )|
= −|or phans p

v ( f )|)
where or phans p

v ( f ) = children( f ) \ N p
v i.e., the set of

children of f that are not in N p
v . λ( f ).min and λ( f ).max
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Fig. 4 Three alternative
visualisations of FD views:
greyed, pruned and collapsed

represent the minimum and maximum values of the original
cardinality, respectively. For the minimum, the difference
between the cardinality and the number of orphans can be
negative in some cases,9 hence the necessity to take the max-
imum between this value and 0. The maximum value is the
maximum cardinality of f in d if the number of children
in v is greater. If not, the maximum cardinality is set to the
number of children that are in v.

4.4.2 Collapsed visualisation

The set of features N c
v of this visualisation is simply the set of

features in v. The consequence on DEc
v is that some features

have to be connected to their closest ancestor if their parent
is not part of the view.

Transformation 2 (Collapsed visualisation) The transfor-
mations applied to the FD to generate the collapsed visual-
isation are:

N c
v = v

DEc
v =

{
( f, g)| f, g ∈ v ∧ ( f, g) ∈ DE+ ∧ � f ′ ∈ v

= • (( f, f ′) ∈ DE+ ∧ ( f ′, g) ∈ DE+)
}

λc
v( f ) = (mincardc

v( f ), maxcardc
v( f ))

The computation of cardinalities λc
v( f ) is slightly more

complicated than in the pruned case. Formally, mincardc
v ( f )

and maxcardc
v( f ) are defined as follows:

mincardc
v( f ) = ∑

minλ( f ).min(ms_minc
v( f ))

maxcardc
v( f ) = ∑

maxλ( f ).max (ms_maxc
v( f ))

where

ms_minc
v( f ) = {mincardc

v(g)|g ∈ or phansc
v( f )}�

= {1|g ∈ children( f ) \ or phansc
v( f )}

ms_maxc
v( f ) = {maxcardc

v(g)|g ∈ or phansc
v( f )}�

= {1|g ∈ children( f ) \ or phansc
v( f )}

The multisets ms_minc
v( f ) and ms_maxc

v( f ) collect the car-
dinalities of the descendants of f . The left part of the union10

9 See Sect. A.1 for an example.
10 � is the union on multisets.

recursively collects the cardinalities of the collapsed descen-
dants whereas the right side adds 1 for each child that is in
the view. The λ( f ).min minimum values of the multiset are
then summed to obtain the minimum cardinality of f . The
maximum value is computed similarly.

The next section illustrates how the basic steps of the trans-
formations are applied to the motivating example presented
in Sect. 3. A detailed and step-by-step explanation of the
transformations performed in Fig. 4 is reported in Sect. A.1.

5 Motivating example revisited

With the chief developer of PloneMeeting, we identified
and specified three stakeholder-specific views: the coloured
areas in Fig. 3. The complete FD from which this sample is
extracted is freely available online.11 The orange area con-
sists of the features that should be made accessible to the web
administrator. Those are technical features that require a deep
understanding of the inner workings of PloneMeeting. The
blue area contains the features that should be made acces-
sible to the PloneMeeting manager. They define “business”
(vs. technical) configuration choices that do not evolve much
at runtime and should not be edited by regular users. The red
area gathers the features that should be made accessible to
the end users. Their main purpose is to let users customize
their web-based working environment.

These views, visually depicted as the coloured areas, can
be specified with the three XPath expressions presented in
Fig. 5. The web administrator view is specified by the expres-
sion in Fig. 5a and has to be interpreted as follows: the feature
Workflow and security is in (line 1) as well as all its descen-
dants (line 2), Email notification (line 3) and Display macro
(line 4). Figure 5b, c specify the two other views and should
be understood similarly.

In Sect. 4.4, we stressed the importance of proposing
alternative visualisations during FBC. We now illustrate how
these transformations are applied to the PloneMeeting case.
Let us focus on the transformations needed to obtain the

11 http://www.info.fundp.ac.be/~acs/tvl.
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(a)

(b)

(c)

Fig. 5 XPath expressions of the different views in Fig. 3

pruned and collapsed visualisations for the web administra-
tor.12 The abbreviations we use for feature names are indi-
cated in the respective figures. In the pruned case (Fig. 6a),
one can observe that neither the features G, D, U, V nor their
descendants are in the view (see Fig. 3). This means that they
should not be accessible to the web administrator, i.e. deci-
sions cannot be made about them (select/deselect). They are
thus simply removed (pruned) from the FD. In contrast, T is
not in the view but one of its children, Display macro, is. In
that case, T is greyed out, i.e. displayed but not accessible
to the web administrator. The new set of features N p

v thus
only contains the features in Fig. 6a. The same holds for the
decomposition edges of DE p

v . The new cardinalities of the
pruned version of the FD are calculated as follows:

λ
p
W A(MC) = 〈max(0, 7 − 4)..min(7, 7 − 4)〉 = 〈3..3〉

λ
p
W A(T ) = 〈max(0, 2 − 1)..min(2, 2 − 1)〉 = 〈1..1〉

where MC has four orphans (G, D, U and V ) and T only
one (Task creator).

12 The transformations of the PloneMeeting manager and user are
respectively presented in Sects. A.2 and A.3.

Obtaining the collapsed visualisation (Fig. 6b) is more
complex because collapsed features entail the recursive com-
putation of cardinalities. In this particular example, the Dis-
play macro feature (boldfaced in Fig. 6b) is the only example
of a collapsed feature. Unlike in the pruned case, its parent
feature T is removed from the visualisation. This means that
Display macro is disconnected from the FD. It thus has to
be linked to its closest ancestor, here MC , to keep the view
consistent.

New cardinalities must be calculated to match the trans-
formed structure of the FD. Starting from the root feature,
we separate the orphans of MC(G, D, U, T and V ), which
requires recursive calls, from its children that are in the view
(W and E), which gives:

ms_minc
W A(MC) = {mincardc

W A(G), mincardc
W A(D),

mincardc
W A(U ), mincardc

W A(T ),

mincardc
W A(V )} � {1, 1}

ms_maxc
W A(MC) = {maxcardc

W A(G), maxcardc
W A(D),

maxcardc
W A(U ), maxcardc

W A(T ),

maxcardc
W A(V )} � {1, 1}

Only the left-hand side of the union implies a recursive
call. The value for G, D, U and V is trivially 0 since nei-
ther they nor their children are in the view. T , however,
has one child in the view. The cardinality of T is simple
to compute since its children have no descendants, which
yields:

mincardc
W A(T ) = ∑

min2{0} � {1} = 0 + 1 = 1
maxcardc

W A(T ) = ∑
max2{0} � {1} = 0 + 1 = 1

λc
W A(T ) = 〈1..1〉

The right-hand side simply contains as many 1s as there
are children of MC in the view, two in this case (W and E).
The cardinality of MC in the collapsed visualisation thus
gives:

mincardc
W A(MC) = ∑

min7{0, 0, 0, 1, 0} � {1, 1}
= 0 + 0 + 0 + 0 + 1 + 1 + 1 = 3

maxcardc
W A(MC) = ∑

max7{0, 0, 0, 1, 0} � {1, 1}
= 0 + 0 + 0 + 0 + 1 + 1 + 1 = 3

λc
W A(MC) = 〈3..3〉

As appears in Table 3, the pruned and collapsed visuali-
sations of the sample FD of Fig. 3 (counting 57 features),
respectively the complete FD (counting 193 features), offer
significant reductions in the number of features to be han-
dled by end-users. Regarding view definition, XPath allows
relatively concise definitions (last column of Table 3). The
number of lines needed to specify the three views of the
sample and complete FDs are, respectively, 24 and 36. This
means that for a difference of 136 features between the
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Fig. 6 Pruned and collapsed
visualisation of the web
administrator

(b)(a)

Table 3 Number of features for
the three views and the
corresponding number of XPath
lines for the sample and
complete FDs

Profile Greyed Pruned Collapsed XPath

Sample Complete Sample Complete Sample Complete Sample Complete

W eb administrator 57 193 11 48 10 47 4 5

User 57 193 20 75 19 74 5 9

PloneMeeting manager 57 193 36 120 36 120 15 22

sample and complete FDs, only 12 additional XPath lines
are needed.

6 Correctness of transformations

It is important to demonstrate that the above transforma-
tions are correct. As mentioned earlier, FBC systems are
meant to check the validity of the configuration choices
based on the original global FD, not on the visualisations.
Still, a proof of correctness ensures that no misleading FD
constraints are shown to the stakeholders. Intuitively, the
correctness criterion should state that the produced visualisa-
tions preserve a form of semantic equivalence with the orig-
inal FD. We define it as follows: [[(N t

v, r, λt
v, DEt

v, {})]] =
[[(N , r, λ, DE, {})]]|N t

v
.

Intuitively, the criterion means that the valid configura-
tions one could infer from a visualisation are actually the
valid configurations of the FD, when looking only at the
view-specific features (hence the projection |N t

v
), and regard-

less of the crosscutting constraints (hence the {} in the two
tuples). For simplicity, we ignore P which has no impact on
the demonstration of the correctness.

We present below the proof of correctness for the pruned
(Theorem 1) and collapsed (Theorem 2) visualisations. There
is no need to prove the greyed visualisation since dg

v = d.

6.1 Pruned transformation

Before proving the correctness in the pruned visualisation,
we prove that DE p

v in d p
v is a prefix of DE in d, which is

demonstrated in Lemma 1.

Definition 9 (Prefix) Let T1 and T2 be trees. T1 is a pre-
fix of T2 iff there is an injection f : N1 → N2 such that
(x, y) ∈ DE1 ⇔ ( f (x), f (y)) ∈ DE2 and r1 = f (r2).

Lemma 1 The tree defined by d p
v is a prefix of the tree defined

in d.

Proof By definition of Transformation 1, N p
v contains all the

features in v that appear on a path between a feature in v and
the root (transitive closure of DE). Also, DE p

v only contains
decomposition edges from DE that relate features in N p

v .
Thereby, for all (x, y) ∈ DE p

v , we have (x, y) ∈ DE , where
the injection is the identity function. Furthermore, the root is
also included by definition of N c

v . ��
We also need the notion of local consistency of an FD

to account for the absence of crosscutting constraints, i.e.
� = ∅. Local consistency defines the satisfiability of d only
in terms of the constraints imposed by decompositions, i.e.
λ, and ignores crosscutting constraints.
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Definition 10 (Local consistency) A given d ∈ LF D such
that � = ∅ is locally consistent iff ∀n ∈ N • |children(n)| ≥
λ(n).min ∧ λ(n).min ≤ λ(n).max .

Also, we know from [3] that d ∈ LF D is satisfiable if and
only if [[d]] �= ∅. From this result, we derive a corollary:

Corollary 1 (Local consistency satisfiability) If d ∈ LF D is
not locally consistent, then it is not satisfiable: [[d]] = ∅,

If d is not locally consistent, then it has no valid configu-
ration and the semantic equivalence is trivially satisfied. We
demonstrate the correctness of d p

v under the assumption that
it is locally consistent.

Theorem 1 (Correctness of d p
v ) If d is locally consistent

(see Definition 10), the pruned visualisation d p
v preserves

the semantic equivalence with the original FD d:

[[(N p
v , r, λp

v , DE p
v , {})]] = [[(N , r, λ, DE, {})]]|N p

v

Proof We prove this theorem in two steps.

⊆ First, we prove that:

[[(N p
v , r, λp

v , DE p
v , {})]] ⊆ [[(N , r, λ, DE, {})]]|N p

v

Let us consider c ∈ [[(N p
v , r, λp

v , DE p
v , {})]]. We claim

that there exists c′ ∈ [[(N , r, λ, DE, {})]]|N p
v

such that
c ⊆ c′ |N p

v
⊆ c′ by local consistency. Indeed, for each

m /∈ N p
v and m ∈ children(n) with n ∈ N p

v we have
m ∈ orphansp

v (n), i.e. m /∈ c. By definition we know that
mincard p

v (n) ≥ |(children(n) ∩ c)| ≥ maxcard p
v (n). Fur-

thermore, DE p
v being a prefix of DE , each feature justified

in c, will also be justified in c′ and they both have the same
root (by Lemma 1).

⊇ Then, we prove by reductio ad absurdum that:

[[(N p
v , r, λp

v , DE p
v , {})]] ⊇ [[(N , r, λ, DE, {})]]|N p

v

To do so, we will try to build a configuration c such that:

c ∈ [[(N , r, λ, DE, {})]]|N p
v

∧ c /∈ [[(N p
v , r, λp

v , DE p
v , {})]]

To prove that such a configuration c does not exist, we test
the different conditions that could lead to incompatible con-
figurations.

1. Different root features Since both d p
v and d have the same

root feature by definition of v, we know that all the con-
figurations will have the same root feature.

2. Every product satisfies the extra constraints In this case,
the set of constraints is empty, hence does not influence
the equality.

3. Different decomposition edges We know from Lemma 1
that DEc

v is a prefix of DE . Thereby, all features in N p
v

are subject to the same constraints in d p
v and d.

4. Different decomposition types We have to prove that d p
v

does not exclude configurations of d that only contain
features in N p

v . Valid configurations can be excluded if
there is a feature f ∈ N p

v for which the interval between
the minimum and maximum cardinality is reduced too
much or relaxed too much.
Let us first prove that less features than expected
cannot be selected for any feature f . We know that
mincard p

v ( f ) = λ( f ).min − |or phans p
v ( f )| if the

result is positive, which means that the recomputed value
only depends on the features in N p

v . If the result is neg-
ative, then mincard p

v ( f ) = 0, which means that no fea-
ture in N p

v might be selected. The cardinality is thus only
reduced by the number of features outside N p

v . Thereby,
less features than required in N p

v cannot be selected.
More features than necessary cannot be selected either.
We know that if |children( f )| − |or phans p

v ( f )|
< λ( f ).max then maxcard p

v ( f ) = |children( f )| −
|or phans p

v ( f )| which means that we can select as many
features as available in N p

v because the original car-
dinality is greater than the number of available chil-
dren of f in N p

v . If it is not the case, we simply have
maxcard p

v ( f ) = λ( f ).max , which is the same condi-
tion as in d. It is thus not possible to select more features
than required among those in N p

v .
The reduction of the minimum and maximum values only
depend on the number of orphans. This means that the
interval cannot be altered so that it excludes configura-
tions containing features in N p

v . ��

6.2 Collapsed transformation

Unlike the pruned visualisation, the semantic equivalence in
the collapsed visualisation cannot be demonstrated. Take the
simple counter-example shown in Fig. 7a and the collapsed
visualisation of view v depicted in Fig. 7b. A valid configura-
tion of the collapsed visualisation would be {a, d, f }. How-
ever, that configuration is not valid in the FD since {c, d} and
{ f, g} must always appear together in a configuration.

This shows that the transformation that produces the col-
lapsed visualisation does not preserve the semantics of the
FD. Yet, we can still prove that it does not restrict the original
semantics and provides the most precise semantics express-
ible on v.

Definition 11 (Most precise semantics of a collapsed visu-
alisation) The most precise semantics of a collapsed visu-
alisation of a view v on an FD d, [[(N c

v , r, λc
v, DEc

v, {})]],
defines the greatest possible lower bound and the smallest
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(a) (b)

Fig. 7 Counter-example of correctness of the collapsed visualisation

possible upper bound. This means that there does not exist a
cardinality transformation λt such that:

1. ∃n ∈ N c
v • λc

v(n).min < λt (n).min ∨ λc
v(n).max >

λt (n).max ;
2. [[(N , r, λ, DE, {})]]|N c

v
⊆ [[(N c

v , r, λt , DEc
v, {})]], the

semantics of d is not restricted.

Theorem 2 (Correctness of dc
v ) If d is locally consistent (see

Definition 10), the collapsed view d p
v (1) does not restrict

the original semantics of d, and (2) gives the most precise
semantics expressible on v.

Proof Let us demonstrate that in two steps.

(1) dc
v does not restrict the original semantics of d. By

reductio ad absurdum we can prove that:

[[(N , r, λ, DE, {})]]|N c
v

⊆ [[(N c
v , r, λc

v, DEc
v, {})]]

i.e. it is not possible to build a configuration c such that:

c ∈ [[(N , r, λ, DE, {})]]|N c
v

∧ c /∈ [[(N c
v , r, λc

v, DEc
v, {})]]

1. Every product contains the root feature. Since both
dc
v and d have the same root feature by definition of

v, we know both products have the same root feature.
2. Every product satisfies the extra constraints In this

case, the set of constraints is empty, hence does not
influence the equality.

3. Every feature is justified By definition of DE , every
feature must be justified. This means that all the
ancestors of a selected feature have to be selected
(and nothing can be inferred about the descendants).
Likewise, all the descendants of a deselected fea-
ture have to be deselected (and nothing can be
inferred about the ancestors). The selection of ances-
tors and deselection of descendants is thus preserved

in the transitive closure. Therefore, any configura-
tion respecting DE is also valid in DEc

v , modulo the
projection on N c

v .
4. Every feature satisfies the decomposition type If c is

not satisfiable in [[(N c
v , r, λc

v, DEc
v, {})]], there exists

n ∈ N c
v such that the interval of λc

v(n) is too narrow.
If orphansc

v(n) = ∅ then we know by definition of
Transformation 2 that λc

v(n) = λ(n). The intervals
are thus equivalent if f has no orphans in N c

v .
If orphansc

v(n) �= ∅, then let us consider m ∈
orphansc

v(n). The absence of m from N c
v means that

its children are collapsed in DEc
v , thereby implying

the recalculation of the cardinality of n. To be valid,
cardinality has to preserve the constraints imposed
by the cardinality of both n and m. The cardinality of
the children of n is respected as every non-orphan
is counted once and then summed up to respect
the value of λ(n).min and λ(n).max , respectively.
The lower and upper bounds are also augmented
with the value of the bounds of the cardinality of
m. By propagating upward the cardinality constraint
of m to n, one ensures that both valid combinations
of children of n and m in c can be obtained. The
recursion ensures that cardinalities of descendants of
orphans are propagated upward. Thereby, the recom-
puted interval is large enough to allow all the possible
configurations.

It is thus not possible to find a configuration c that is not
a valid configuration of the view.

(2) dc
v gives the most precise semantics expressible on v.

From Definition 11, we prove by reductio ad absurdum
that there does not exist a cardinality transformation λt

that gives a more precise semantics than λc
v for any fea-

ture n ∈ N c
v . Let us start with the minimum cardinality.

If we had λc
v(n).min < λt (n).min, it would mean that

either some orphans are missed or that less features than
required are selected. The former case is not possible
because ms_minc

v takes into account all the features in
N c

v . The latter case is not possible because mincardc
v

sums up the exact number of minimum cardinality of
d. Likewise, for the maximum cardinality, if we had
λc

v(n).max > λt (n).max , it would mean that either we
incorrectly include orphan or we select more features
than required, which cannot be.
Since we have already proven that dc

v does not restrict
the semantics of d, we know that dc

v provides the most
precise semantics. ��

Two interesting conclusions can be drawn from this lat-
ter theorem: (1) any valid configuration of the FD is a valid
configuration of the collapsed view; (2) the cardinalities of
the collapsed visualisation produce an under-constrained FD.
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This is an inevitable consequence of collapsing several
descendants under the same feature. In fact, the first con-
clusion comes at the price of the second.

7 Tool support

The tool support developed for multiview FBC builds upon
SPLOT [37].13 SPLOT is an open source web-based system
for editing, sharing and configuring FDs. The public version
of SPLOT available online now gathers 100+ FDs that are
all freely accessible. SPLOT is developed in Java and uses
Freemarker14 and Dojo15 to handle the web front-end. To
provide efficient interactive configuration, SPLOT relies on a
SAT solver (SAT4J16) and a BDD solver (JavaBDD.17) Their
reasoning abilities enable error detection and decision prop-
agation. SPLOT was chosen because it offers robust support
for FBC, it is easy to extend, and the existing repository of
FDs is an excellent testbed for multiview FDs. All our exten-
sions to SPLOT are available online.18 The three extensions
supporting multiview FBC are briefly introduced below.

The first extension enables view creation with XPath
expressions. Figure 8 shows the view creation menu of
SPLOT. The upper part shows the FD of PloneMeeting. In
the middle part, views can be created or edited. Here, the
User view is selected and the XPath expression that defines
it is displayed. The bottom part contains additional informa-
tion identifying the creator of the view. Finally, the Evaluate
XPath Expression button checks that the XPath expression is
correct and shows the results of its evaluation. The Evaluate
Views Coverage button checks the completeness of the views
and returns the features that are not covered, if any. The last
two buttons save, respectively delete, the current view in the
shared repository.

The actual configuration of a view is provided by the sec-
ond extension. The extension allows to select (1) the view
to configure and (2) the visualisation. In Fig. 9, the view
of the User is selected and the pruned visualisation is acti-
vated. Note the greyed Data feature: it can neither be selected
nor deselected. The stakeholder can switch freely from one
visualisation to another as she configures her view without
loosing the decisions that were already made. This way, we
dynamically combine the advantages of the three visualisa-
tions and leave the complete freedom to the stakeholder to
choose the one(s) that best fit(s) her preferences.

13 http://www.splot-research.org.
14 http://freemarker.sourceforge.net/.
15 http://www.dojotoolkit.org/.
16 http://www.sat4j.org/.
17 http://javabdd.sourceforge.net/.
18 http://www.splot-research.org/extensions/fundp/fundp.html.

The table on the right monitors the status of the cur-
rent configuration. Basically, it tells what features have been
selected or deselected, and which decisions were propagated.
It also provides general information about the operations per-
formed by the SAT solver and the status of the configuration.
The latter is a good indicator of the work that remains after
the configuration of the view. As we have seen, the solver
reasons about the full FD and not only about the view. This
is important in practice. Recall that for the collapsed visu-
alisation, Sect. 6.2 concludes that the cardinalities produce
an under-constrained FD. Cardinalities are part of the con-
straints taken into account by the solver. Thereby, the deci-
sion to select or deselect a feature in the view is propagated in
the complete model—keeping the global configuration con-
sistent. In the counter-example in Fig. 7 for instance, the
selection of d in the view will automatically entail the selec-
tion of c, even though the recomputed cardinality does not
enforce that propagation.

The third extension provides basic support for multi-user
concurrent configuration. At the time being, it only enables
synchronous configuration. To prevent conflictual decisions,
a configuration session manager is used. Its role is (1) to
maintain a mutual exclusion on the configuration engine so
that only one user can commit a decision at a time, and (2)
to notify all the users of a decision and of the results of the
propagation.

These three extensions can be tested online on any model
available in the SPLOT repository or any valid FD respecting
SPLOT’s input format. Multiview FBC has also been suc-
cessfully incorporated in feature-based configuration work-
flows (FCW) [12]. The idea behind FCWs is that a workflow
can be used to drive the configuration of the different views.
The workflow defines the configuration process (which can
be complex, i.e., include loops, parallelism, and so on) and
each view on the FD is assigned to a task in the workflow.
A view is configured when the corresponding task is exe-
cuted. More information about the implementation and early
experience reports can be found at the SPLOT website.

8 Related work

Views have been repeatedly advocated as a means to solve
scalability and configuration issues of FDs. This section
revisits the concept of view and discusses the major results
in the literature. For clarity, we explore related work sequen-
tially for each step presented in Fig. 1: variability modelling,
stakeholder identification, view specification and configura-
tion. Recall that only the two last steps fall within the scope
of this work, which also assumes the pre-existence of a com-
plete FD. But since multi-view approaches have been studied
in relation to the former steps, we also mention selected work
related to those.
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Fig. 8 SPLOT view creation
menu illustrated on the User
view

8.1 Variability modelling

Dealing with real-world problems almost always implies
dealing with multiple stakeholders with different and often
inconsistent perspectives. Viewpoint-based approaches have
been around for nearly two decades and address exactly
those issues. They mainly support the identification, struc-
turing, reconciliation and co-evolution of heterogeneous
requirements [38,39]. They have been studied mostly by the
requirements engineering (RE) community. They are more
concerned with the identification and reconciliation of view-
points than with the specification and generation of view-
point- (or concern-) specific views on an artifact like the

FD in our case. View-point-based RE techniques are not
specific to SPLE. Still, viewpoint-based techniques can be
used upstream of variability modelling to help build a con-
sistent FD from heterogeneous viewpoints. More specific
to variability modelling, Grünbacher et al. [18] outline the
challenges that arise when heterogeneous stakeholders are
involved in the modelling of large FDs.

8.2 Stakeholder identification

The identification of stakeholders is also a problem studied
in RE [40]. We refer the reader to [41] for a general introduc-
tion to stakeholder identification and ways to structure and
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Fig. 9 Configuration view of the User with the pruned visualisation in SPLOT

trace their contributions. Directly related to feature model-
ling, Bidian et al. [42] identify stakeholder profiles through
the tasks appearing in goal models which are subsequently
linked to the features realising them.

8.3 View specification

A notorious problem is the poor scalability of FDs. In their
basic form, they cannot cope with the hundreds or thousands
of features that one typically encounters in real projects.
Early attempts to manage the complexity of FDs [2,43] were
mainly concerned with separating user-oriented from tech-
nical features. For this, they used simple techniques, namely
annotation and layering of the FD, but those remained infor-
mal and were not used to generate views or for configura-
tion. In OVM [1], a similar distinction was proposed between
internal and external variability, but had the same limitations
as the aforementioned approaches.

Zhao et al. [35] group features according to stakeholder
profiles and other typical concerns. A major limitation is that
they do not display decomposition operators in views, which
greatly simplifies the problem at the expense of complete-
ness. Features in views are physically duplicated and mapped

to features of the FD. The resulting links are represented as
constraints between the views and the FD. Their suggestion
of using priorities among views as a means to handle conflicts
could be a possible extension of our work, though.

Researchers developed SoC techniques for FDs that reflect
organisational structures and tasks. Reiser et al. [16] address
the problem of representing and managing FDs in SPLs that
are developed by several companies, as is common for exam-
ple in the automotive industry. They propose to use several
FDs and structure them hierarchically. This way, each of them
can be managed separately by one of the partner compa-
nies. Local changes are then propagated to other FDs through
the hierarchy. Hierarchical decomposition in SPLs was also
studied by Thompson et al. [44], although not in relation to
FDs. In both cases, similar hierarchies are straightforward to
obtain with our technique since we support any decompo-
sition scheme (not only hierarchical). Our technique is also
more formal and thus more readily automatable.

Clarke et al. [45] introduce a formal theory of views for
FDs, where a view is defined as a disjoint set of features and
abstractions. An abstraction encapsulates a set of features
hidden behind a label meaningful to the user. They formally
define compatibility properties between views and their rec-
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onciliation, i.e. combination. To preserve the genericity of
their mathematical model, the authors reason exclusively in
terms of features independently of the structure and con-
straints imposed by the FD. As a result, they do not discuss
the concrete specification, rendering, and configuration of
views on an FD. Although more abstract, their approach is
entirely compatible with ours as we both rely on the FD
semantics by Schobbens et al. [3]. The inclusion of feature
abstraction and reconciliation could be potential tracks for
future work.

8.4 Configuration

Reiser et al. [16] along with Mannion et al. [17] discuss how
multiple views affect the structure of the FD and configu-
ration with a particular focus on decision propagation and
conflict resolution [17]. Unlike other approaches that only
consider the selection/deselection of features, they address
changes to the structure of views that are propagated back
to the original FD. To resolve conflicts that can happen dur-
ing the merge of concurrent changes, they propose a list of
conflict resolution rules within views. They thus focus on
resolving conflicts among changes to the content of the FD
rather than conflicts between configuration decisions.

Batory et al. [46] have worked on multi-dimensional SoC
where a dimension is a set of features addressing a particular
concern. They use a so-called “origami matrix” to describe
the relationships between features across the dimensions.
Their approach does not aim to generate views but rather to
compose features (described separately) along each dimen-
sion.

Czarnecki et al. [10] have introduced multi-level staged
configuration as a way of organizing FBC as a sequence of
stages. This idea was later formalised [11] and extended [12]
to deal with arbitrarily complex configuration processes (not
only purely sequential ones). Although these and related [47,
48] approaches are automatable and readily applicable to
configuration, they remain limited to a single “tyrannical”
decomposition scheme [49] (e.g. stages, workflow activities)
which must be decided in advance and directly affects the FD.

Mendonça et al. [28,29] suggest configuration spaces
(similar to views) as a means to support collaborative product
configuration. They also provide algorithms to automatically
generate a configuration plan out of a FD and a set of con-
figuration spaces. Their approach is complementary to ours.
While they focus on configuration plan generation, we con-
centrate on the definition of configuration spaces (views). We
extend their work with more fine-grained feature grouping,
relax the complete coverage hypothesis, suggest techniques
to define views and alternative visualisations, and provide
tool support.

9 Conclusion

9.1 Summary of contributions

In this paper, we have formalised and implemented an
integrated solution for multi-view FBC, one of the main
techniques to select product requirements during software
product line engineering. Specifically, the three problems we
addressed are the specification of a view, the coverage of a
set of views, and the visualisation of a view.

View specification Existing tools usually offer basic fil-
tering mechanisms that rely on simple keyword-based
searches, which only enable approximative navigation in
the feature hierarchy. As for research papers, they do not
present any concrete means to build views. To solve this
issue, we have proposed alternative solutions (definition
by intension vs. by extension), and developed a tool using
XPath to navigate in the FD and select features.
View coverage Most approaches overlook the notion of
coverage. Those which take it into account, assume that
coverage must be complete [28,29]. The study of the
coverage problem lead us to formally define sufficient and
necessary coverage conditions. Both checks have been
implemented in our tool.
View visualisation Different authors have suggested
different approaches to visualize views. In [28,35], the
visualisation used by the authors is comparable to the col-
lapsed visualisation. Tools usually provide simple filter-
ing or search mechanisms that resemble the greyed (e.g.
xconfig and eCos) or pruned (e.g. pure::variants) visu-
alisations. However, in both cases the result ignores FD
decomposition operators and cardinalities. To address this
problem, we have (1) formally defined three visualisa-
tions based on the observation made during an actual open
source development project, (2) demonstrated the correct-
ness of these visualisations, and (3) shown how our tool
allows to switch freely from one visualisation to the other
while preserving the decisions made by the stakeholders.

9.2 Future work

Both existing approaches and our toolset use textual nota-
tions to define views. To our knowledge, no graphical or
interactive approach has been proposed to build views on an
FD. This is an interesting topic for future investigation. Then,
the pros and cons of the various approaches could be studied
in greater depth (e.g. empirically), and their combinations
could be envisaged.

The three alternative visualisations were developed to
provide more flexibility to the configuration environment
and more precise contextual information to the user. That
improvement is, however, limited to tree-like representa-
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Table 4 Results of the calculation of the transformations on Fig. 4

Greyed Pruned Collapsed

N g
v1 DEg

v1 λ
g
v1 N p

v1 DE p
v1 λ

p
v1 N c

v1
DEc

v1
λc

v1

{ V, { λ
g
v1 (V ) = 〈3..3〉, {V, { λ

p
v1 (V ) = 〈3..3〉, {V, { λc

v1
(V ) = 〈2..4〉,

Ė, (V, Ė), λ
g
v1 (Ė) = 〈0..1〉, Ė, (V, Ė), λ

p
v1 (Ė) = 〈0..1〉, Ė, (V, Ė), λc

v1
(Ė)= 〈0..1〉,

E, (Ė, E), λ
g
v1 (E) = 〈0..0〉, E, (Ė, E), λ

p
v1 (E) = 〈0..0〉, E, (Ė, E), λc

v1
(E) = 〈0..0〉,

Ȧ, (V, Ȧ), λ
g
v1 (Ȧ) = 〈0..1〉, Ȧ, (V, Ȧ), λ

p
v1 (Ȧ) = 〈0..1〉, Y, (A, Y ), λc

v1
(Y ) = 〈0..0〉,

A, (Ȧ, A), λ
g
v1 (A) = 〈1..3〉, A, (Ȧ, A), λ

p
v1 (A) = 〈0..2〉, O, (A, O), λc

v1
(O) = 〈0..0〉,

Y, (A, Y ), λ
g
v1 (Y ) = 〈0..0〉, Y, (A, Y ), λ

p
v1 (Y ) = 〈0..0〉, Ḋ, (V, Ḋ), λc

v1
(Ḋ)= 〈0..1〉,

O, (A, O), λ
g
v1 (O) = 〈0..0〉, O, (A, O), λ

p
v1 (O) = 〈0..0〉, D, (Ḋ, D), λc

v1
(D) = 〈0..1〉,

B, (A, B), λ
g
v1 (B) = 〈0..0〉, Ḋ, (V, Ḋ), λ

p
v1 (Ḋ) = 〈0..1〉, DY (D, DY ) λc

v1
(DY ) = 〈0..0〉

Ḋ, (V, Ḋ), λ
g
v1 (Ḋ) = 〈0..1〉, D, (Ḋ, D), λ

p
v1 (D) = 〈0..1〉, } }

D, (Ḋ, D), λ
g
v1 (D) = 〈1..1〉, DY (D, DY ) λ

p
v1 (DY ) = 〈0..0〉

DY, (D, DY ), λ
g
v1 (DY ) = 〈0..0〉, } }

DO, (D, DO), λ
g
v1 (DO) = 〈0..0〉,

DB (D, DB) λ
g
v1 (DB) = 〈0..0〉

} }

tions of FDs. Recent advances deviate from the traditional
explorer-like representations [13,14] whilst others recom-
mend dedicated configuration interfaces [50]. Understand-
ing the most suitable interfaces for multi-view FBC in these
approaches will require qualitative user studies.

An important property of FBC is that it should always lead
to valid configurations [11]. In our case, doing the configu-
ration through multiple views is not a problem per se. This is
because, although stakeholders only have partial views, the
FBC system reasons about the whole FD. However, problems
can arise when features belong to more than one view or, more
generally, when the selection of a feature in one view influ-
ences the selection of another feature in a concurrent view.
The configuration of these features can be problematic if the
stakeholders make conflicting decisions.

For now, conflicting decisions across views are managed
with a mutual exclusion in a synchronous configuration envi-
ronment. In practice though, the synchronous assumption
does not always hold. In this case, conflict management needs
to be performed at different steps of the configuration pro-
cess. This requires much more elaborate conflict detection,
reporting, and resolution mechanisms. Besides, views can
constrain the information disclosed in a conflict report or fix.
For instance, some security policies only allow to report the
name of the stakeholder with which a local decision conflicts
without any detail about the cause of the conflict. View inter-
action in concurrent configuration environments is a major
research topic on our agenda.
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A Appendix

A.1 Detailed example of transformations

Table 4 synthesizes the results of the three transformations
presented in Fig. 4. The column of the greyed visualisation
simply contains the features, decomposition edges and cardi-
nalities of the FD. The boldfaced features are non-primitive
features added to ensure the correctness of transformations
(see Sect. 2).

In the pruned case, we see that the decomposition edges
containing B, DO and DB have been pruned and removed
from the list, and so are their associated cardinalities. The car-
dinalities that have been recalculated are underlined. The new
value λ

p
v1(A) is obtained with 〈max(0, 1−1)..min(3, 3−1)〉

whereas λ
p
v1(D) is 〈max(0, 1−2)..min(1, 3−2)〉. Note here

that the minimum cardinality of D could have been negative,
hence the need to set it to 0.

The only node removed in the pruned visualisation is A.19

Which results in two collapsed nodes (i.e. Y and O). These
nodes are directly connected to the root as their parent is
pruned away. The cardinality of V must thus be recalculated,
as detailed below.

ms_min p
v1(V ) = {mincardc

v1
( Ȧ)} � {1, 1}

mincardc
v1

(V ) = ∑
min3{0} � {1, 1} = 0 + 1 + 1 = 2

ms_max p
v1(V ) = {maxcardc

v1
( Ȧ)} � {1, 1}

maxcardc
v1

(V ) = ∑
max3{2} � {1, 1} = 1 + 1 + 2 = 4

19 And so is its parent non-primitive feature Ȧ.
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ms_min p
v1( Ȧ) = {mincardc

v1
(A)} � {}

mincardc
v1

( Ȧ) = ∑
min0{0} = 0

ms_max p
v1( Ȧ) = {maxcardc

v1
(A)} � {}

maxcardc
v1

( Ȧ) = ∑
max1{2} = 2

ms_min p
v1(A) = {mincardc

v1
(B)} � {1, 1}

mincardc
v1

(A) = ∑
min1{0} � {1, 1} = 0

ms_max p
v1(A) = {maxcardc

v1
(B)} � {1, 1}

maxcardc
v1

(A) = ∑
max3{0} � {1, 1} = 0 + 1 + 1 = 2

ms_min p
v1(B) = {} � {}

mincardc
v1

(B) = ∑
min0{} = 0

ms_max p
v1(B) = {} � {}

maxcardc
v1

(B) = ∑
max0{} = 0

The cardinality of D is the same as in the pruned visual-
isation:

ms_min p
v1(D) = {mincardc

v1
(DO), mincardc

v1
(DB)}

= �{1}
mincardc

v1
(D) = ∑

min1{0, 0} � {1} = 0
ms_max p

v1(D) = {maxcardc
v1

(DO), maxcardc
v1

(DB)}
= �{1}

maxcardc
v1

(D) = ∑
max1{0, 0} � {1} = 1

ms_min p
v1(DO) = {} � {}

mincardc
v1

(DO) = ∑
min0{} = 0

ms_max p
v1(DO) = {} � {}

maxcardc
v1

(DO) = ∑
max0{} = 0

ms_min p
v1(DB) = {} � {}

mincardc
v1

(DB) = ∑
min0{} = 0

ms_max p
v1(DB) = {} � {}

maxcardc
v1

(DB) = ∑
max0{} = 0

A.2 Pruned and collapsed visualisation of the PloneMeeting
Manager

The pruned and collapsed visualisations of the PloneMeeting
Manager are presented in Fig. 10. Although calculated dif-
ferently, the cardinalities of both visualisations are all equal.

Pruned The new cardinalities of the pruned visualisation
are calculated as follows:

λ
p
P M (MC) = 〈max(0, 7 − 1)..min(7, 7 − 1)〉 = 〈6..6〉

λ
p
P M (D) = 〈max(0, 3 − 1)..min(3, 3 − 1)〉 = 〈2..2〉

λ
p
P M (W ) = 〈max(0, 3 − 2)..min(3, 3 − 2)〉 = 〈1..1〉

λ
p
P M (T ) = 〈max(0, 2 − 1)..min(2, 2 − 1)〉 = 〈1..1〉

Collapsed The new cardinalities of the collapsed visualisa-
tion are calculated as follows:

mincardc
P M (MC) = ∑

min7{0} � {1, 1, 1, 1, 1, 1} = 6
maxcardc

P M (MC) = ∑
max7{0} � {1, 1, 1, 1, 1, 1} = 6

λc
P M (MC) = 〈6..6〉

Fig. 10 Pruned and collapsed visualisation of the PloneMeeting man-
ager view

mincardc
P M (D) = ∑

min3{0} � {1, 1} = 2

maxcardc
P M (D) = ∑

max3{0} � {1, 1} = 2

λc
P M (D) = 〈2..2〉

mincardc
P M (W ) = ∑

min3{0, 0} � {1} = 1

maxcardc
P M (W ) = ∑

max3{0, 0} � {1} = 1

λc
P M (W ) = 〈1..1〉
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Fig. 11 Pruned and collapsed
visualisation of the user view

(b)(a)

mincardc
P M (T ) = ∑

min2{0} � {1} = 1
maxcardc

P M (T ) = ∑
max2{0} � {1} = 1

λc
P M (T ) = 〈1..1〉

A.3 Prune and collapsed visualisations of the User

Pruned The pruned visualisation of the User is presented in
Fig. 11a. The new cardinalities are calculated as follows:

λ
p
User (MC) = 〈max(0, 7 − 5)..min(7, 7 − 5)〉 = 〈2..2〉

λ
p
User (D) = 〈max(0, 3 − 2)..min(3, 3 − 2)〉 = 〈1..1〉

Collapsed The collapsed visualisation of the PloneMeeting
manager is presented in Fig. 11b. The new cardinalities are
calculated as follows:

mincardc
User (D) = ∑

min3{0, 0} � {1} = 1

ms_minc
User (MC) = {mincardc

User (G), mincardc
User (D), mincardc

User (W ),

mincardc
User (U ), mincardc

User (E), mincardc
User (T ),

mincardc
User (V )} � {1}

= {0, 1, 0, 0, 0, 0} � {1}
mincardc

User (MC) = ∑
min7{0, 1, 0, 0, 0, 0} � {1} = 2

maxcardc
User (D) = ∑

max3{0, 0} � {1} = 1

ms_maxc
User (MC) = {maxcardc

User (G), maxcardc
User (D), maxcardc

User (W ),

maxcardc
User (U ), maxcardc

User (E), maxcardc
User (T ),

maxcardc
User (V )} � {1}

= {0, 1, 0, 0, 0, 0} � {1}
maxcardc

User (MC) = ∑
max7{0, 1, 0, 0, 0, 0} � {1} = 2

λc
User (MC) = 〈2..2〉
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